Locally irreducible rings
نویسندگان
چکیده
منابع مشابه
Commutative Subdirectly Irreducible Radical Rings
A ring R is radical if there is a ring S (with unit) such that R = J (S) (the Jacobson radical). We study the commutative subdirectly irreducible radical rings and show that such a ring is noetherian if and only if is finite. We present a reflection of the commutative radical rings into the category of the commutative rings and derive a lot of examples of the subdirectly irreducible radical rin...
متن کاملStructure Theory of Faithful Rings, Iii. Irreducible Rings
The first two papers of this series1 were primarily concerned with a closure operation on the lattice of right ideals of a ring and the resulting direct-sum representation of the ring in case the closure operation was atomic. These results generalize the classical structure theory of semisimple rings. The present paper studies the irreducible components encountered in the direct-sum representat...
متن کاملLocally finite profinite rings
We investigate the structure of locally finite profinite rings. We classify (Jacobson-) semisimple locally finite profinite rings as products of complete matrix rings of bounded cardinality over finite fields, and we prove that the Jacobson radical of any locally finite profinite ring is nil of finite nilexponent. Our results apply to the context of small compact G-rings, where we also obtain a...
متن کاملLocally Compact Baer Rings
Locally direct sums [W, Definition 3.15] appeared naturally in classification results for topological rings (see, e.g.,[K2], [S1], [S2], [S3], [U1]). We give here a result (Theorem 3) for locally compact Baer rings by using of locally direct sums. 1. Conventions and definitions All topological rings are assumed associative and Hausdorff. The subring generated by a subset A of a ring R is denote...
متن کاملCohen–macaulay Quotients of Normal Semigroup Rings via Irreducible Resolutions
For a radical monomial ideal I in a normal semigroup ring k[Q], there is a unique minimal irreducible resolution 0 → k[Q]/I → W 0 → W 1 → · · · by modules W i of the form ⊕ j k[Fij ], where the Fij are (not necessarily distinct) faces of Q. That is, W i is a direct sum of quotients of k[Q] by prime ideals. This paper characterizes Cohen–Macaulay quotients k[Q]/I as those whose minimal irreducib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Australian Mathematical Society
سال: 1985
ISSN: 0004-9727,1755-1633
DOI: 10.1017/s0004972700009795